

2011 Year in Review

RADIATION INJURY TREATMENT NETWORK

Program Manager, RITN

January 3, 2012

Purpose & Objectives

•Purpose:

-Provide an annual review of RITN activities and set the stage for the upcoming year.

•Objectives:

Participants will be able to describe key accomplishments of RITN during2011.

-Participants will be able to explain new RITN developments during 2011.

-Participants will be describe the 2012 RITN tasks.

-Participants will be able to explain 2012 projects.

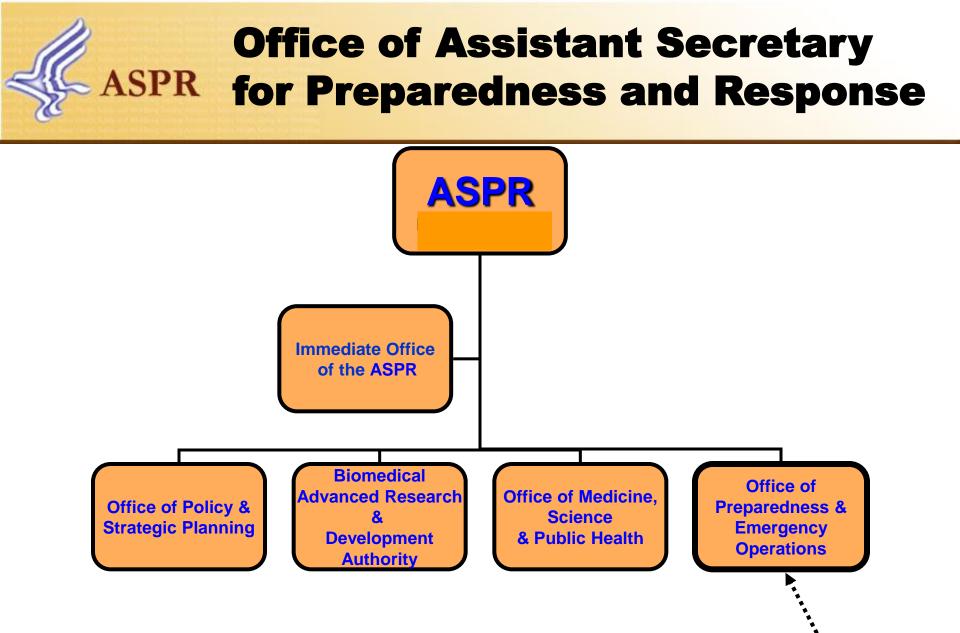
Agenda

- RITN 101 (for new members)
- 2011 Activity
- 2012 Plan
- 2012 Tasks
- 2011 Capacity Survey Overview
- Questions

Why do we do what we do?

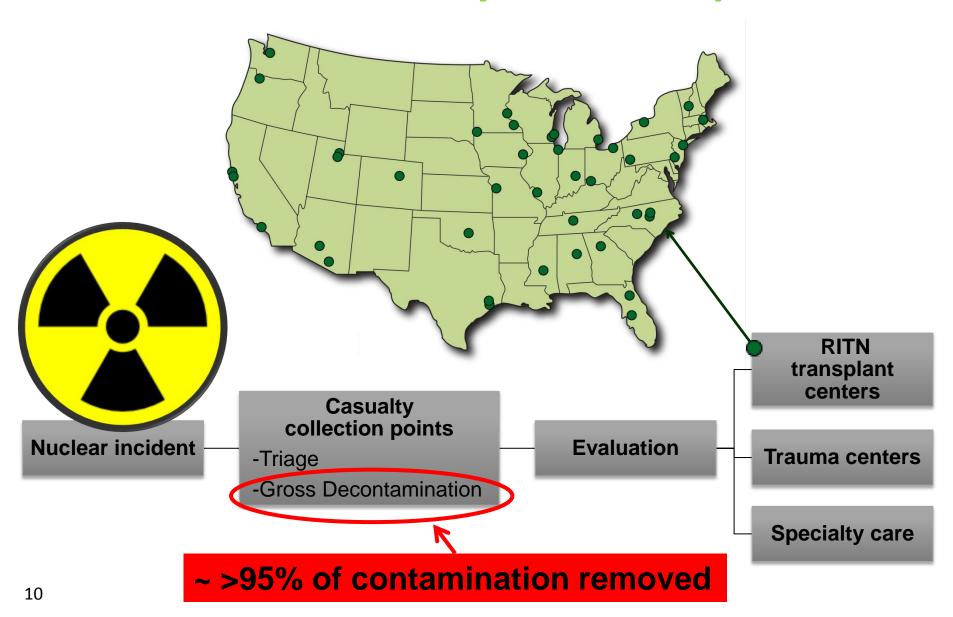
Prevailing opinion of experts is not if, but when

"Two decades after the end of the Cold War, we face a cruel irony of history. The risk of a nuclear confrontation between nations has gone down, but the risk of nuclear attack has gone up." -President Obama 4/13/2010

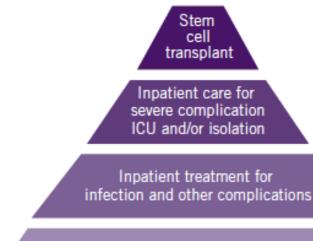


RITN 101: How would it work, really?

Wikipedia, June 2011


http://www.hhs.gov/aspr/

Reality will not be as orderly as any plan...



Victims still have a long way to go after arrive at a casualty collection point...

Victim Profile

Outpatient treatment for infection and other complications

Few will require marrow transplant Many will require monitoring or intensive supportive care from a Hematologist/Oncologist Risk stratification and surveillance only

Hick JL, Weinstock DM et al. Disaster Med Health Prep 2011

Victims of an IND

2011 Activity

Organization

- Two centers left RITN during 2011:
 - Banner, AZ
 - Iowa Donor Center (actually in 2012)
- Eight centers joined RITN during 2011:
 - Shand's, FL (rejoined)
 - Temple University, PA
 - Medical University of SC
 - Roger Williams Medical Center, RI
 - The Children's Mercy Hospital, MO
 - University of Miami, FL
 - Cleveland Clinic, OH
 - Children's of Philadelphia, PA

Radiation Injury Treatment Network

Transplant Centers
AL - University of Alabama at Birmingham
AZ - University Medical Center
CA - UCSF Medical Center
CA - City of Hope National Medical Center
CA - Stanford Hospital and Clinics
CO - Presbyterian/St. Lukes Medical Center
FL - H. Lee Moffitt Cancer Center
FL - Shands Hospital at the University of Florida
FL - University of Miami
GA - Northside Hospital
IA - University of Iowa Hospitals and Clinics
IL - Rush University Medical Center
IN - St. Francis Hospital and Health Centers
KS - University of Kansas Medical Center
MA - Dana Farber/Partners Cancer Care
MI - Barbara AnnKarmanos Cancer Center
MN - Mayo Clinic Rochester
MN - University of Minnesota BMT Program
MO - Barnes-Jewish Hospital at Washington
MO - The Children's Mercy Hospital
MS - University of Mississippi Medical Center
NC - UNC Hospitals
NC - Wake Forest Univ Baptist Medical Center
NC - Duke University Medical Center
NH - Dartmouth-Hitchcock Medical Center
NY - Strong Memorial Hospital
NY - Memorial Sloan-Kettering Cancer Center
OH - Cincinnati Children's Hospital Medical Center
OH - Cleveland Clinic Foundation
OH - University Hospitals of Case Medical Center
OK - Oklahoma Univ. Medical Center & Childrens Hospital
OR - Oregon Health & Science University PA - Children's Hospital of Philadelphia
TA - Onimens Hospital of Ethiadelphia
Ped = Pediatric patient only facility

P/A = Pediatric and adult capable facility

NDMS = National Disaster Medical System Center

If no capability is annotaed the facility is adult only

		Transplant Centers	
P/A	NDMS HPP	PA - Temple University	
P/A	NDMS HPP	PA - University of Pennsylvania Medical Center	
P/A		PA - Western Pennsylvania Cancer Institute	
P/A	NDMS HPP	RI - Roger Williams Medical Center	
P/A	NDMS HPP	SC - Medical University of South Carolina	
	NDMS HPP	SD - Avera McKennan Transplant Institute	
P/A	NDMS	TN - Vanderbilt University Medical Center	
P/A	HPP	TX - M.D. Anderson Cancer Center	P
	NDMS HPP	TX - Texas Children's Hospital	P
	NDMS HPP	UT - LDS Hospital	
P/A	NDMS HPP	UT - University of Utah	P
		WA - Seattle Cancer Care Alliance	P
	NDMS HPP	WI - Children's Hosp of WI & Midwest Children's CC	P
	NDMS HPP	WI - Froedtert Memorial Lutheran Hospital	
P/A	HPP		

P/A NDMS HPP	Donor Centers
P/A NDMS	CA - City of Hope National Medical Center
HPP	CO - Colorado Marrow Donor Program
Ped NDMS	MD - C.W. Bill Young Marrow Donor Center
P/A NDMS HPP	MI - NMDP operated donor center
P/A NDMS HPP	WA - Puget Sound Blood Center
HPP	TN - Blood Assurance
P/A NDMS HPP	

Cord Blood Banks

P/A NDMS CA - StemCyte International Cord Blood Center P/A HPP IL - ITxM Cord Blood Services Ped MO - St. Louis Cord Blood Bank NC - Carolinas Cord Blood Bank NDMS HPP WA - Puget Sound Blood Center NDMS HPP CO- University of Colorado P/A NDMS P/A NDMS HPP TX - MD Anderson Ped NDMS HPP

As of 03 JAN 2012

		NDMS
		NDMS HPP
		NDMS HPP
		HPP
		NDMS HPP
	P/A	HPP
	Ped	NDMS HPP
		NDMS
	P/A	NDMS HPP
	P/A	
s CC	Ped	NDMS HPP
		NDMS

TC

DC

CBB

Total

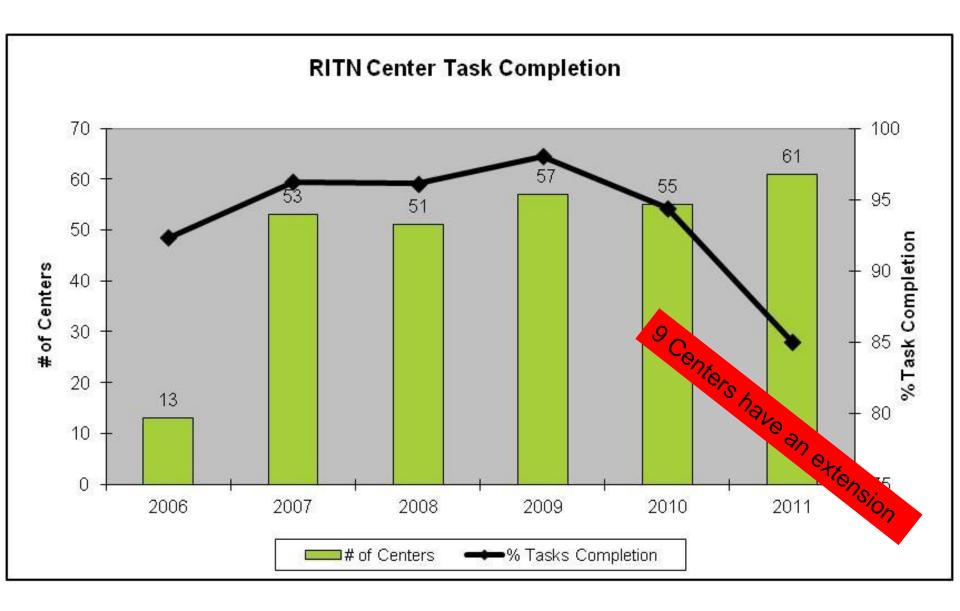
Total NDMS Centers 34 % TCs that are NDMS 72% Total HPP Centers 33

% TCs that are HPP 70%

47

6

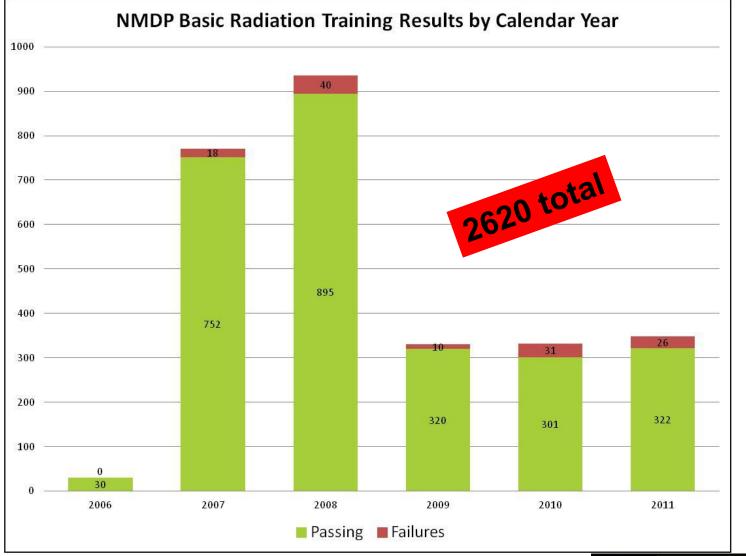
7 60


NDMS HPP

NDMS HPP

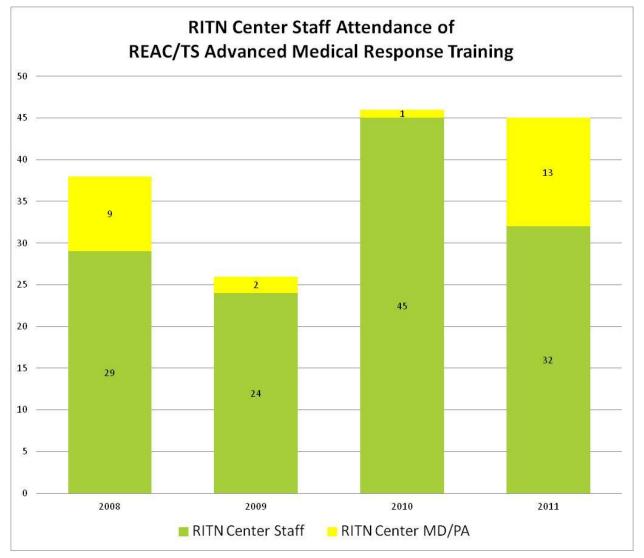
Composition: •

- 60 total _
 - 47 TCs
 - 6 DC
 - 7 CBB
- Changes this year: •
 - One center terminated
 - One center resigned
 - **Eight joined**



16

Training of RITN Center Staff



RITN – 2011 Year in Review

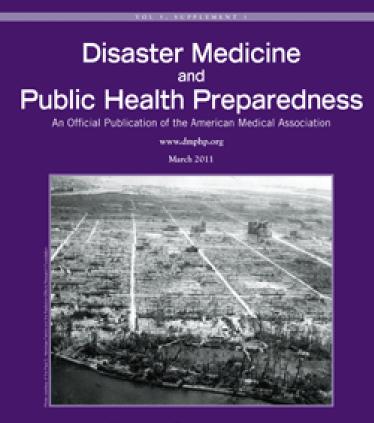
17

And More Training

18

2011 Activity

- Monitoring of Fukushima-Daiichi Nuclear Power Plant
- Educational Conference in Chicago
 - 2011 State of the Science Workshop: Radiation Exposure, Medical Countermeasures and Treatment (125 attendees)
 - 2009 Medical and Organizational Challenges Resulting from a Radiological/Nuclear Emergency (130 attendees)
 - 2007 Nuclear Terrorism: Preparedness and Response for Hematology/Oncology Centers (100 attendees)
- New formal Partner:
 - EBMT-Nuclear Accident Committee



2011 Activity

- Site Assessments (11 completed)
- Implementation of HealthCare Standard software
- 2011 capacity survey
- RITN Emergency Manager contact tracking (optional)
- RITN General Number tracking (mandatory)
- Update of SOP Template
- New RITN fax number: see the new SOP template
- Update of Basic Radiation Training
- RITN Medical Advisor co-authored 8 articles in Disaster Medicine and Public Health Preparedness manuscript on Nuclear Preparedness

Fantastic resource RITN collaborated on at a price you can't beat

Nuclear Preparedness

•Nuclear Preparedness - DMPHP Manuscript

(http://www.dmphp.org/content/vol5/Supplement 1/)

•RITN Medical Advisor co-authored 8 of 14 articles

More fantastic and free resources with RITN referenced...

Planning Guidance for Response to a Nuclear Detonation

Second Edition June 2010

Developed by the National Security Staff Interagency Policy Coordination Subcommittee for Preparedness & Response to Radiological and Nuclear Threats

•Planning Guidance for Response to a Nuclear Detonation

(http://www.remm.nlm.gov/PlanningGuidanceNuclearDetonat ion.pdf)

Radiological Dispersal Device Playbook

(http://www.phe.gov/Preparedness/planning/playbooks/rdd/P ages/default.aspx)

•State and Local Planners Playbook For Medical Response to a Nuclear Detonation

(http://www.phe.gov/Preparedness/planning/playbooks/state andlocal/nuclear/Pages/default.aspx)

2012 Plan & Tasks

2012 Projects

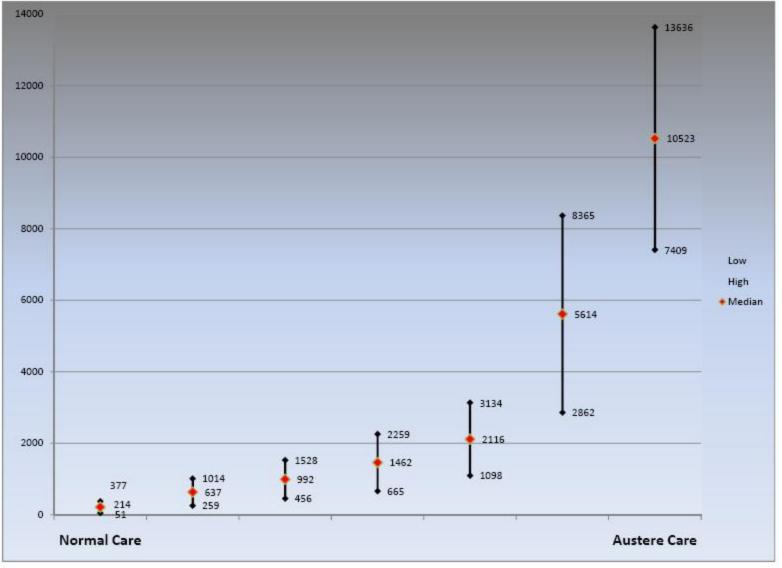
- New:
 - Addition of five (5) transplant centers
 - Referral center patient review guidelines
 - Publish lessons learned from site assessments
 - 2012 member survey
 - Radiation awareness training for non-medical staff (housekeeping, security, etc..)
 - 2013 functional exercise planning
- Ongoing:

- RITN Concept of Operations
- Special Needs Treatment Guidelines development
- Update of medical grand rounds presentation

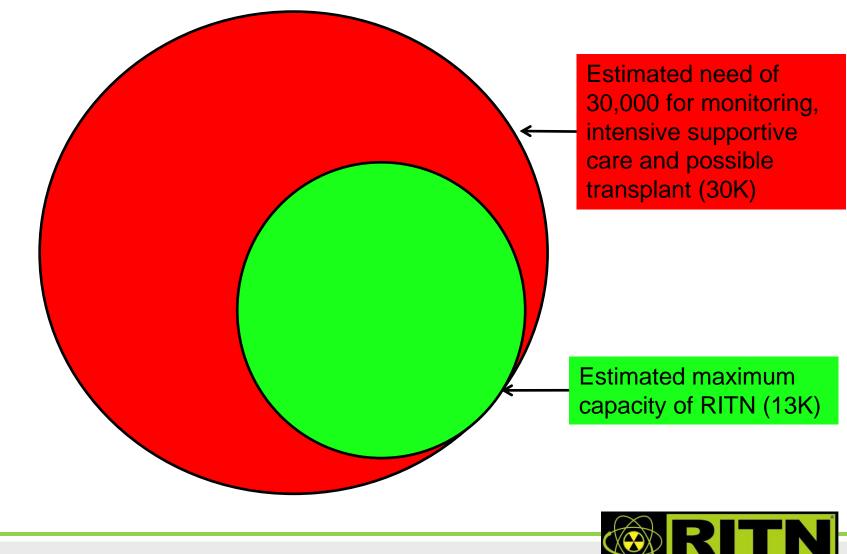
2012 Tasks (Jan – Sep 2012)

TASK SUMMARY TABLE:

	Task 1	Task 2	Task 3	Task 4	Task 5	Payment
	Communications	SOP	Refresher Training	Educate	Exercise	
тс	Yes	Yes - Revamp	Yes	Yes	Yes	\$8,000
DC	Yes	Yes - Update	Yes	No	No	\$2,000
CBB	Yes	Yes - Update	Yes	No	No	\$2,000



#	Question	
1	How many patients could you receive in your existing BMT unit with no changes (e.g., no early discharges/transfers, no delayed admissions, no addition of beds, etc)?	
2	How many patients could you receive now in your existing BMT unit with modest changes (e.g., early discharges/transfers, a few delayed admissions, addition of beds from Hem/Onc service, etc)?	Answer Options
3	How many patients could you receive now in your existing BMT unit with aggressive changes (e.g., aggressive discharges/transfers, many delayed admissions)?	1-10 11-50
4	How many patients could you receive now with spill-over into other areas of your hospital (Hem/Onc, med/surg, ICU), assuming no alterations in standards of care?	51-100 101-499
5	How many patients could you receive now in your existing BMT unit with aggressive changes and spill-over into other areas of your hospital (Hem/Onc, med/surg, ICU), assuming some alterations in standards of care?	>500
6	How many patients could you receive now with the above and utilizing additional hospitals in your community?	
7	How many patients could you receive now with the above and incorporating large austere emergency treatment facilities that have been previously planned for (e.g. pre-defined: dormitories, gymnasiums, domed stadiums, and assuming major alterations in standards of care)?	


#	Question	Low	High
		Estimate	Estimate
1	How many patients could you receive in your existing BMT unit with no	51	377
	changes (e.g., no early discharges/transfers, no delayed admissions, no addition of beds, etc)?		
2	How many patients could you receive now in your existing BMT unit	259	1,014
	with modest changes (e.g., early discharges/transfers, a few delayed admissions, addition of beds from Hem/Onc service, etc)?		
3	How many patients could you receive now in your existing BMT unit	456	1,528
	with aggressive changes (e.g., aggressive discharges/transfers, many		
	delayed admissions)?		
4	How many patients could you receive now with spill-over into other	665	2,259
	areas of your hospital (Hem/Onc, med/surg, ICU), assuming no		
<u> </u>	alterations in standards of care?	4 000	0.404
5	How many patients could you receive now in your existing BMT unit	1,098	3,134
	with aggressive changes and spill-over into other areas of your hospital		
	(Hem/Onc, med/surg, ICU), assuming some alterations in standards of		
	care?		
6	How many patients could you receive now with the above and utilizing	2,862	8,365
	additional hospitals in your community?	7.400	40.000
7	How many patients could you receive now with the above and	7,409	13,636
	incorporating large austere emergency treatment facilities that have		
	been previously planned for (e.g. pre-defined: dormitories,		
	gymnasiums, domed stadiums, and assuming major alterations in		
	standards of care)?		

Still have more to do...

30

BOX 2 Conventional, Contingency, and Crisis Capacity

Conventional capacity—The spaces, staff, and supplies used are consistent with daily practices within the institution. These spaces and practices are used during a major mass casualty incident that triggers activation of the facility emergency operations plan.

Contingency capacity—The spaces, staff, and supplies used are not consistent with daily practices, but provide care that is *functionally equivalent* to usual patient care practices. These spaces or practices may be used temporarily during a major mass casualty incident or on a more sustained basis during a disaster (when the demands of the incident exceed community resources).

Crisis capacity–Adaptive spaces, staff, and supplies are not consistent with usual standards of care, but provide sufficiency of care in the setting of a catastrophic disaster (i.e., provide the best possible care to patients given the circumstances and resources available). Crisis capacity activation constitutes a *significant* adjustment to standards of care (Hick et al., 2009).

NOTES: Definitions of conventional, contingency and crisis capacity. For further details, see Hick et al. Disaster Med Public Health Prep 2009;3:S52-7. (<u>http://www.ncbi.nlm.nih.gov/entrez/guery.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19349869</u>)

Incident demand / resource imbalance increases Risk of morbidity / mortality to patient increases

Recoverv

			•	Recover	Y	
	Conventional	Contingend	y .	Crisis		
Space	Usual patient care space fully utilized		reas re-purposed (PACU, its for ICU-level care)	Facility damaged / unsafe or non-patient care areas (classrooms, etc) used for patient care		
Staff Usual staff called in and utilized		Staff extension (brief deferrals of non-emergent service, supervision of broader group of patients, change in responsibilities, documentation, etc)		Trained staff unavailable or unable to adequately cae for volume of patients even with extension techniques		
Supplies Cached and usual supplies used		Conservation, adaptation, and substitution of supplies with occasional re-use of select supplies		Critical supplies lacking, possible re-allocation of life- sustaining resources		
Standard ^{Usual care} of care		Functionally equivalent care		Crisis standards of care ¹		
Jsual opera	ting		4	`	Austere operatin	
condition	Indicator:	potential standards ²	Trigger: crisis of care ³	standards	conditions	

- 1) Unless temporary, requires state empowerment, clinical guidance, and protection for triage decisions and authorization for alternate care sites / techniques. Once situational awareness achieved, triage decisions should be as systematic and integrated into institutional process, review, and documentation as possible.
- 2) Institutions consider impact on the community of resource utilization (consider 'greatest good' vs. individual patient needs for example, conserve resources when possible) but patient-centered decision-making is still the focus
- Institutions (and providers) must make triage decisions balancing the availability of resources to others and the individual patient's needs – shift to community-centered decision-making

IOM Letter Report, September 2009

It is not the Cold War.... It is not a futile effort! Mayber

33

JIVE ()

Partners

- American Society for Blood and Marrow Transplantation
- Department of Defense Office of Naval Research
- Health Resources and Services Administration
- Dept. Health & Human Services Asst. Secretary of Preparedness and Response
- AABB-Disasters Task Force (formerly American Assoc. of Blood Banks)
- New England Center for Emergency Preparedness
- European Group for Blood and Marrow Transplantation-Nuclear Accident Committee
- Center for International Blood and Marrow Transplant Research
- Radiation Emergency Assistance Center/Training Site
- Radiation Emergency Medical Management website: <u>www.remm.nlm.gov</u>

REMM Website Updated Jan 2012

Questions

